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During the period April. 15, 1988 - May 15, 1989, AFOSR supported
research work on the the stochastic behavior of the LMS and related
adaptive algorithms has yielded results in two major areas:

A. Digital Implementation of Stochastic Gradient Type Adaptive
Algorithms

The mathematical models developed in [15] were extended to analyze the
behavior of four types of digital implementations of the basic LMS
algorithm.

a) Nonlinear quantization effects in LMS and Block LMS adaptation were
compared on the basis of dynamic range, algorithm transient response and
stalling phenomena. It was shown [3] that the LMS algorithm requires
(1/2 Log 2 L - K ) fewer bits than the BLMS algorithm for the same
saturation and stalling effects (L=block length and K lies between .2 and 1).

b) Saturation effects in the LMS Adaptive Line Enhancer (ALE) were
studied using the saturation model developed in [15]. The ability of a
digitally implemented ALE to cancel a weak sinusoid in the presence of a
strong sinusoid and noise was investigated [4]). The mathematical model
and the simulations both showed a significant slowdown in cancellation of
the weaker sinusoid when the larger sinusoid caused the algorithm to
operate in saturation.

c) [15] studied the effect of a saturation non-linearity on the error term in
the weight up-date term in LMS adaptation. [15] was extended to consider
the effect of a saturation non-linearity on the entire weight up-date term
[5]. By comparison with the [15], there is no significant difference in the
behavior of digital implementations of the LMS algorithm whether round-
off occurs before or after multiplying the error by the data.

d) [15] was also extended to the study of LMS Echo-Cancellation when the
data is non-gaussian [6]. It had been previously shown that, when the
LMS algorithm is implemented using a sign detector (one bit quantizer)
for the error, serious performance degradation occurs for binary data as
compared to gaussian data. The saturation nonlinearity of [15] was used to
study the performance of the binary and gaussian data models. The
number of additional bits for binary data for the same performance was
evaluated.
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The RLS adaptation algorithm is well-known to have a faster
transient response than the LMS algorithm when the input data is colored
and stationary. It is not clear that RLS is superior to LMS for tracking
non-stationary inputs. The chirped sinusoid is an example of a non-
stationary input for which it is useful to obtain a performance comparison
of the two algorithms.

[8] studies the ability of the LMS adaptive algorithm to track a fixed
amplitude complex chirped exponential buried in additive white gaussian
noise. The exponential is recovered using an M-tap predictor W (adaptive
line enhancer). When W is controlled by the LMS algorithm with forget-
ting rate v = uP, (P, is the input noise power), the output misadjustment
is dominated by a lag term of order v-2 and a fluctuation term of order v.
A value vopt exists which yields a minimum misadjustment Mmin. Vopt and
Mmin were evaluated as a function of the signal chirp rate y, the number
of taps M, the noise power P, and the signal-to noise ratio p.

[7] studies the ability of the exponentially weighted RLS adaptive
algorithm to track a fixed amplitude complex chirped exponential buried in
additive white gaussian noise. The exponential is adaptively recovered
using an M-tap predictor W. Five principal results of this work are: 1) the
performance of the algorithm, 2) the methodology of the analysis, 3) proof
of the quasi-deterministic nature of the data-covariance estimates, 4) new
analysis of RLS for an inverse system modelling problem, and 5) new
analysis of RLS for a deterministic time-varying model for the optimum
filter. It is shown that, when W is controlled by the RLS algorithm with
forgetting rate P, the output misadjustment is dominated by a delay term
of order B-2 and a fluctuation term of order B. Thus, a value Bopt exists
which yields a minimum misadjustment M min. Bopt and Mmin are
evaluated as a function of the signal chirp rate y, the number of taps M,
the noise power P, and the signal-to noise ratio p.

The results in [7] and [8] were combined in [9] to yield tracking
performance comparisons between the two algorithms. The minimum
misadjustments for the two algorithms were compared for the same set of
input signal parameters. For a satisfactory predictor output signal-to-noise
ratio, LMS will track better than RLS (smaller misadjustment) unless p>>1

or y is sufficiently,  Thus, this work leads to the very useful and
unexpected result that LMS usually tracks better.




POTENTIAL AIR FORCE APPLICATIONS

A. The LMS algorithm is an extremely popular form of adaptation because
of its simplicity of implementation and well-understood behavior. One
would assume that it has found use in many Air Force systems where a
priori statistical information about the input signals is unavailable. These
applications could include echo-cancellation for hard-wire communication
systems, adaptive interference cancellation for spread-spectrum
communication systems, adaptive beam-forming, and adaptive noise
cancellation in jamming environments. In each case, digital implementa-
tions of the algorithm require an understanding of the number of bits
required for representing the individual mathematical operations that
comprise the algorithm. The results of the work described in Section A
help a designer to select the correct system parameters for fast and
efficient implementations of the algorithm.

B. When can one use the simpler, yet more slowly converging, LMS
algorithm in place of the faster converging, but significantly more difficult
to implement, RLS algorithm? This analysis suggests that LMS is superior
to RLS when tracking some non-stationary signals. The impact of this
result on adaptive systems used by the Air Force would be to retain the
simplicity of LMS for tracking environments.
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A Weighted Normalized Frequency Domain LMS
Adaptive Algorithm

SHAUL. FLLORIAN ann NEIL J. BERSHAD, FelLLOW, IEEE

Abstract—Thic paper presents a general filtering scheme for obtain-
ing an inputl power estimate for setting the convergence parameter g
scparately in each frequency bin of a frequency domain LMS adaptive
filter (FDAF) algorithm. A linear fitering operation is performed on
the magnitude square of the input data and incorporated directly into
the slgorithm as a data-dependent time-varying stochastic p(n).

The mean performance of the weighted normalized frequency do-
main LAMS algorithin (WNFDAF) is analyzed using 1.1.d. Gaussian data,
aud the result< are validated by the Monte Carlo simulations of the
slgorithm,

The <imutations aee also tised (o <fody the weight transient behav-
lor. The simulations suggest that short smoothing times are suffcient
for rapid weight convergence without large fluctuations in the power
estimates significantly affecting transient weight hehavior,

[. INTRODUCTION

REQUENCY domain implementation of the LMS

adaptive filter has advantages over time implementa-
tions. Improved convergence properties and reduced
computational complexity are the two main advantages
141 12].

In applications of the frequency domain LMS adaptive
filter where the input nower varies dramatically over dif-
ferent frequency bins. some input power mcasurement
must he incorporated in the algorithm. A recent paper |3}
described a normalized frequency domain adaptive LMS
filicr (NFDAF). The normalization involved an estimate
of the input power in cach frequency bin using a uni-
formly weighted moving average window. The power es-
timate was included directly in the frequency domain LMS
algorithm. The statistical behavior of the NFDAF in [3]
was investigated using Gaussian data models. Closed form
cxpressions were derived for the transient and steady-state
mean weight and mean-square error per bin.

The purpose of this paper is to extend the analysis to a
weighted NFDAF (WNFDAF)—an adaptive filter which
incorporates an arhitrary linear weighting on the magni-
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tude square of the data for input power estimation. Thus,
this extended theory is useful for the hormalized fre-
quency domain LMS filter with power estimates that have
recursive descriptions and/or nonuniform weighted mov-
ing average [3]-[6]. A further purpose of this paper is to
study, via Monte Carlo simulations, the transient behav-
ior of the WNFDAF when the initial settings of the power
estimate are varied.

These results are a measure of how rapidly the algo-
rithm can respond to changing input power levels—a
problem which was not investigated in [3].

1. ANALYSIS
A. Mathematical Model

Using the FDAF model in [3], if the input processes to
the FFT's are wide-sense stationary over the observation
time. then disjoint spectral outputs are uncorrelated.' As-
suming the inputs are joint Gaussian random processes,
the disjoint bins of the FFT output provide statistically
independent outputs. Thus, each complex tap is operating
on independent data. Furthermore, sinte the FFT opera-
tions are linear operations on the joint Gaussian input se-
quences, the FFT outputs are jointly conmiplex Gaussian
scquences.

The weight update equation, corresponding to a single
complex tap, is given by [7)

W(n + 1) = W(n) + pe(n) x*(n)
= W(n) [1 = plx(m)|'] + pd(n) x%(n)
()

where

W(n) = complex scalar weight on the nth iteration
e(n) = error waveform = d(n) — y(n)
v(n) = filter output = W(n) x(n)
d(n) = reference waveform ’
x(n) = input data sequence
p = adaptation coefficient,

The adaptive filter scheme incorporates the same input
signal model as in [3). The input sequences d(n) and x(n)
contain a desired component, buried in statistically inde-

'Alihomgh this is true for white noise inputs, I Is not generally true since
the FFT hine are not apectrally disjoint. However, the bins are spproxi-
mistely uncarrelsted if the pr- r spectrum of the signal changes slowly
over the handwidih of o aingle FFT bin {8).

0096-1518/8R8/0700-1002%01.00 © 1988 IEEE
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On the Probability Density Function of the LMS
Adaptive Filter Weights

NEIL J. BERSHAD, reLLOwW, IEEE, AND LIAN ZUO QU

Abstract—In this paper, the joint probability density function of the
weight vector In LMS adaptation is studied for Gaussian data models.
An exact expression is derived for the characteristic function of the
weight vector at time n + 1 conditioned on the weight vector at time
n. The conditional characteristic function Is expanded in a Taylor se-
rles and averaged over the unknown weight density to yleld a first-
order partial ditferential-difference equation in the unconditioned
characteristic function of the weight vector,

The equation is approximately solved for small values of the adap-
tation parameter and the weights are shown to be jointly Gaussian with
time varying mean vector and covariance matrix given as the solution
to well-known difference equations for the weight vector mean and co-
varfance matrix. The theoretical results are spplied to analyzing the
use of the weights in detection and time delay estimation. Simulations,
which support the theoretical results, are also presented.

1. INTRODUCTION

HE time domain LMS adaptive filter algorithm (1] has

found many applications in situations where the sta-
tistics of the input processes are unknown or changing.
These include noise cancelling [2], line enhancing [3]},
{4], {7], and adaptive array processing (5], [6]. The al-
gorithm uses a transversal filter structure driven by a pri-
mary input (Fig. 1). The filter weights are updated itera-
tively based upon the difference between the filter output
and a reference input, so as to minimize the mean-square
error of the difference.

The LMS algorithm has been very thoroughly investi-
gated over a long period of time. Its transient weight mean
and covariance matrix and mean square error behavior
have been evaluated precisely [6])-[9] for uncorrelated in-
put data. Expressions for the transient mean square error
as a function of the eigenvalues of the data covariance
matrix Ryy have been given by a number of authors for
both the real [6], [8], [9] and complex [6], {7] LMS al-
gorithms.

Although the results in [6)-[9] are useful for determin-
ing the transient and steady-state mean and covariance of
the LMS algorithm, there are many situations where ad-
ditional statistical information about the weight vector
would be useful. These cases include detection of a nar-

Manuscript received September 16, 1986; revised June 1, 1988. This
work was supported in pant by the Air Force Office of Scientific Research
under Project 2304/A6, Grant 86-0093.

N. J. Bershad is with th» Department of Electrical Engineering, Uni-
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Fig. 1. LMS adaptive filter structure.

row-band line componeht in background noise using the
weight vector as a test statistic (Adaptive Line Enhancer
[7], [10]-[14)]), by using the filtered output as a test sta-
tistic [13), [14]}, and for time delay estimation [15).

More recently, the LMS algorithm has been used as a
canceller as part of a spread spectrum communication sys-
tem. The output of the canceller acts as the input t0 a
matched filter binary decision device. Knowledge of the
statistics of the canceller output is crucial to predicting
error probabilities for the system [16], [17], [28].

In all four cases, knowledge of the first and second mo-
ments of the weights is not sufficient to calculate 1) re-
ceiver operating characteristics (ROC's) relating detec-
tion and false alarm probabilities for the detectors, 2) error
probabilities for the binary decisions, and 3) estimation
performance. Most often, via a central limit argument, it
is assumed that the test statistic and/or the weights are
Gaussian [14], [16], [17]. In some unpublished work [18],
simulations suggest that the weights are Gaussian. How-
ever, there is no existing theory supporting these simu-
lations. Some recent theoretical work {19] on the fre-
quency domain LMS algorithm has shown that the single
complex weight is Gaussian in steady state. Further recent
work has shown this result also holds in the transient case
after an initial phase of adaptation [20].

In this paper, the joint characteristic function of the
weight vector in real LMS adaptation is investigated when
the inputs are zero mean stationary Gaussian sequences,
independent from iteration to iteration. Simulations which
support the theoretical analysis are also presented. The
results of the analysis are applied to 1) detecting correla-
tion between the primary and reference inputs using the
weight vector as the input to a matched filter, and 2) es-
timating the relative delay between the primary and the
reference.

0096-3518/89/0100-0043$01.00 © 1989 1EEE
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Abstract

Analog implementations of the LMS and Block LMS (BLMS) adaptive filtering
algorithms have been shown to be equivalent with respect to adaptation speed
and steady-state misadjustment errors. However, the BLMS algorithm offers
significant reductions in computational complexity due to block processing.

In this paper, digital implementations of the two algorithms are compared
with respect to finite word effects. The algorithm stalling phenomena is
studied using gaussian data models and conditional expectation arguments.

It is shown that the BLMS algorithm requires (%-1og2 L - K) fewer bits for
the same stalling behavior (L = block length and K lies between .2 and 1,
depending on the precise definition of algorithm stalling). On the other
hand, the LMS algorithm requires log,L fewer bits than BLMS for the same

level of saturation behavior (transient response) at algorithm init{alization.
Hence, overall the LMS algorithm requires éé}OgZL+K) fewer bits than the BLMS

algorithm for the same saturation and stalling effects.




“ERROR SATURATION EFFECTS IN THE LMS ADAPTIVE LINE ENHANCER-TRANSIENT l!SPOHBl'l

by

S. Florian2 and N.J. Bershad3
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ABSTRACT

Digital i{mplementation of the LMS Adaptive Line Enhancer (ALE) introduces
certain nonlinear effects. This paper investigates feedback error signal
saturation effects on the ALE adaptation. A set of non-linear coupled
difference equations is derived by projecting the mean weight vector upon a
set of orthogonal basis functions.. These equations are used to study the
transient behavior of ALE for the case of one and two sinusoids in broadband

noise. Simulations are presented which support the results of the theoretical

model.
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ApsTRACT

The effect of a saturation type non-linearity in the weight update
equation in LMS adaptation is investigated for a white gaussian data model.
Non-1inear difference equations are derived for the weight firét and second
moments that include the effect of a l-e * saturation type non-linearity on
the update term driving the algorithm. A non-linear difference equation for
the mean norm is explicitly solved via a differential equation approximation
and integration by quadratures. The steady-state second moment weight
behavior is evaluated approximately for the nonlinearity. Using these
results, the tradeoff between the extent of weight up—date saturation, steady-
state excess mean—square~error and rate of slgorithm convergence is studied.
For the same steady-state misadjustment error, the trade-off shows that
1) starting with a sign detector, the convergence rate is increased by nearly
a factor of two for each additional bit, 2) as the number of bits is
increased further, the additional bits buy very little in convergence speed,
asymptotically approaching the behavior of the linear model. Thus, by
comparison with previous results [3], there is no significant difference in
the behavior of digital implementations of the LMS algorithm whether round-off

occurs before or after multiplying the error by the data.
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Abstract

The effect of a saturation type error non-linearity in the weight
update equation in LMS adaptive echo-cancellation is investigated for
an independent binary data model. A nonlinear difference equation is
derived for the mean norm of the difference between the estimate and
the unknown filter to be estimated by the algorithm. The difference
equation is evaluated numerically. It is shown that far-end binary
data interference is much more deleterious to algorithm transient be-
havior than far-end gaussian data interference. = The number of
additional bits for the same cancellation convergence rates for binary
vs. gaussian interference of the same power is studied as a function of
various system parameters.

Algorithm convergence rates are studied as a function of an
arbitrary probability density function for the far-end data. It is
shown that a binary pdf causes the worst degradation and a
gaussian shaped pdf causes the least degradation.
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ABSTRACT

This paper studies the ability of the exponentially weighted RLS
adaptive algorithm to track a complex chirped exponential signal buried in
additive white gaussian noise. The signal is adaptively recovered using an
M-tap predictor W,

There are five principal results of this paper: 1) the performance of
the algorithm, 2) the methodology of the analysis, 3) proof of the quasi-
deterministic nature of the data-covariance estimates, 4) new analysis of
RLS for an inverse system modelling problem, and 5) new analysis of RLS
for a deterministic time-varying model for the optimum filter. Specifically,
it is shown that,

1) when W is controlled by the RLS algorithm with forgetting
rate B = (1-A), the output misadjustment is dominated by a
delay term of order B2 and a fluctuation term of order B.
Thus, a value Bopt. exists which .yields a minimum
misadjustment g MIN, Bopt and M MIN are evaluated as a
function of the signal chirp rate y, the number of taps M, the
noise power P, and the signal-to noise ratio p. For
sufficiently small v,

Bopr = {M+1) o2}, M= (3/4) Py(M+ DB

2) The estimate of data covariance matrix R(k) satisfies

i E{[Rao - BIRGN" } << {BIRGNY
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ABSTRACT

This paper studies the ability of the LMS adaptive algorithm to track
a fixed amplitude complex chirped exponential buried in additive white
gaussian noise. The exponential is recovered using an M-tap predictor W.
When W is controlled by the LMS algorithm with forgetting rate v = pP_
(P, is the input noise power), the output misadjustment is dominated by a
lag term of order v-2 and a fluctuation term of order v. Thus, a value Vopt
exists which yields a minimum misadjustment armin, Vopt and Mmin are
evaluated as a function of the signal chirp rate vy, the number of taps M,
the noise power P, and the signal-to noise ratio p. For sufficiently small v,

1

(1-& 3 .
={_M_} oM
(3¢+p)]
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opt P, M+ 1)(1+p)vopl

These results are new and important because they represent precise
analysis of a non-stationary deterministic inverse modelling system
problem. These results are in agreement with the form of the upper
bounds for the misadjustment provided in [4] for the determistic non-
stationarity.
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SUPERIORITY OF LMS OVER RLS FOR TRACKING A CHIRPED SIGNAL

Odile Macchi! and Neil Bershad?

1. Introduction

When an adaptive filter, receiving coloured inputs, has to track a nongtationary environment,
it is often said that the RLS algorithm will outperform the LMS one because it is known to converge
faster. However, convergence speed is a transient ﬁroperty, independent of the amount of noise,
while tracking is a steady-state performance and is therefore also influenced by the noise level. The
answer is not obvious. There is in fact no single answer, and it depends very much on the problem
under consideration. It has already been proved [1] that LMS can be superior in a context where the
optimal filter Wq(k) to be tracked is a zero-mean random function of time.

In this contribution we consider a case where W (k) has deterministic time varigtions. A
coherent signal s(k) with power Py is buried in additive white noise n(k), with power Py, It is known
that the SNR can be improved by implementing a predictor based on past observed samples

X(k) = (x(k-1), ..., x(k-M)T;  x(k) = s(k) + n(k) (1.1)
k) = S(k) = WT X(k). : (1.2)
In fact, if we consider the errors
e(k) & x(k) - {(k), (1.3)
nk) &) - $k), (1.4)
e(k) =n(k) + n(k), (1.5)

the optimal estimator W, minimizing E(In2) is at the same time the optimal predictor minimizing
E(leP), the noise sequence being independent.

When the sinusoid s(k) is subject to chirping with a chirp rate y, according to

2 .
s() = V2P exp (ke + 5= v + o], (1.6)
the optimal filter Wo(k) is time-varying. It therefore has to be tracked, for example, by means of an |
adaptive algorithm of the kind :
] . !
W(k) = W(k-1) + F(e(k), X(k) ...), W) :
e(k) & xck) - Wek-1)T X(K). (1.8)

The system is depicted in Fig.1. This specific example occurs in practical HF radars.

The filter input x(k-1) is coloured since it contains a sinusoid. We are thus in the exact
situation where it has always been assumed that RLS will outperform LMS. In what follows we
show that this assumption is true in the case of a high input SNR, but in the situation of a poor SNR,
it is wrong: LMS will outperform RLS unless the chirp rate y is very high. The limiting case
cortresponds to a fixed value c less than 1 of the so-called "non-stationarity degree”, defined by

v
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ABSTRACT

The Recursive Lesst Squares (RLS) algorithm

1is knowm to converge faster than the Least Hean
Squares (LMS) algorithm when the environment ie
stationary and the {input i{s colored. It is then
often concluded that RLS will track better thsn
IMS in s non-stationary environment. As an
example of a non-ststionary colored input, this
paper studies a chirped sinusoid s buried in
additive white noise n. @ can be adaptively
recovered using an M-tap predictor W. When W is
controlled by the RLS algorithm with forgetting
rate 8 =~ (1-1), the output misadjustment
i{s dominsted by a delsy term of order 8
and a fluctustion term of order B. Hence, &
value 8 exists which yields a minimum value.
sint1ar®Béhavior by the LMS algorithm results in
another minimum misadjustment. The ratio of the
minima does not depend on the chirp rate ¢
but on M and the input SNR p. For a satisfactory
predictor output SNR, LMS will track better than
RLS (smaller misadjustment) unless 1) p >> 1 or
2) ¢ 1s sufficiently large. Thus, this work
leads to the very useful and unexpected result
that LMS usually tracks better!

I. INTRODUCTION

Adaptive algorithms, which are capable of
tracking & non-etationary fnput, always exhibit
two contradictory features: (1) the convergence
speed - & transient property which improves as
the forgetting rate (say 8) increases, (11) the
steady state fluctuations - due to measurement
and algorithm noise which degrade the performesnce
a8 B increases. It is often assumed that RLS
tracks s nonstationary environment better than
LMS becsuse it has a greater convergence speed.
However, this assumption {s not sufficlently
justified because 1i) above is not considered.
Indeed, tracking is not a transient problem but a
steady-stste problem. Thus, the measurement and
algoritim noise are of primary importsnce. 1In
thies paper, s correct methodology is presented to
deal with the tracking comparison of RLS and LMS
for the non-trivial case of a noisy chirped
sinusoid. The sinusoid 1s to be recovered by an
adaptive predictor. For both algorithms, the
misadjustaent or residual mean square error of
the sdaptive filter output is properly minimirzed
by optimizing the forgetting rate. The result-~
ing B y M depends on the nofse and the
chlrpggﬁ g.?ﬂt( v 18 the step-size of LMS) .

1S MS
The corresponding misadjustments 'Cin and "l-in

are then be compared as a function of ¢, p, and
M. 1In the most interesting case (omall o,
sversge §) LMS {s found superior.

This work was supported by the U.S. Alr Force
Office of Scientific Research under Project
2304/A6, Crant 86-0093, by the National Center
for Scientific Resesrch (CNRS), Government of
France send the University of Paris, Oreay.

COMPARISON OF ELS AND LMS ALCORITHMS FOR TRACKING A CHIRPRD SICHAL

Neil Bershad and Odile Macchi
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I11. RECOVERING A MOISY CHIRPRD SICWAL '_’; ::_

For s coherent signal e(k) buried in white
noise n(k), the SNR csn be improved by adding &
number of samples M properly phase eortacted by
a transversal filter W. This is the basie fdes .
behind the "adsptive line enhancer” shown im 4y
Fig. 1. The device ie adaptive because the :
predictor weights sre controlled by the (noisy)
predictive error e(k). The following notatiom i‘
used: ERIAE

x(k)=s(k) + n(k) .1)
past samples: x(k):[x(k-l),...,x(k-!l))t . (2.2)

noisy signal:

predicted signal: o(k) = HIk(k). ' 1249)
recovery error: n(k) = s(k) - s(k) v €2.4)
control error: e(k) = x(k)—ﬁrx(k) t!si)
= n(k) + a(k) . (20‘)
The noise sequence n(k), with power ‘uJ Jq”'u

ssaumed independents” The signal 1s aseumed tO .-
be a chirped sinusoid, namely

Lend ey

b

2
s(k) = /F_ exp )[kO 45-2-0 + 4]

, "“' oy '.:‘:_ |
where ¢ is a random phase with flat prouvl’i%wf;#i

density, © is related to the eenter fr o
and ¢, hereafter called "chirping rate™) 18 &' <
responsible for the non-stationary eharaeter o‘&'_
the signal; P, s the signal power and the ispet:
SNR 1s o

p= P.,PII {""‘.‘!)
Clearly Eq. (2.7) cannot hold for all ¥ 1d "'i,‘{:';("‘*
(=, 4=]. However, it 1s a reasonable -o«{ "y
ineide a time interval T such that |T¢] &« (o
Due tg Eq.2.6, minisization of the recovery &
E(|n|") 1s equivalegt to minimizstion of tha .-
control error E(|e|”). The minimisation emt .“9"
perforsed recursively, using &(k) to control th¥ -
filter state W, using either the RLS (ese Seotion

\he

111) or the LMS algorithm (see Sactfon IV): ~ K2R
Consider the optimal filter ¥ (k) (easds 2V -

varying vhen ¢ is nonzero) which should e . T
achieved ideally by both algorithms. - sl 2
Using the notation s &gu ‘
V= au;(.”. oj". cees o""') ” (29)
2 2 o :
%- lbc. bzcz 9 e0sy b"e" " (’ﬂn“-
. A dAe
b2 exp 19 e doxp [y -}l () x
~8 S

1t has been shown in [3] that the optimal f1lver

is given by
v (k) - xv*p (2.1p) ‘

k& o7(1emp) (2.13)




EFFETS DE SATURATION SUR L'ALGORITHME LMS
EN ANNULATION D'ECHO AVEC DONNEES BINAIRES

N.J. BERSHAD!? M. BUNNET!?3
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; La plupart des études sur 'adaptation LMS en annulation d'écho considerent des données gaussiennes et/ou un algorithme opé-
Jrant en mode linéaire. La réalité est quelque peu différente: - l'impiantation numérique des algorithmes introduit des non linéarités,
§ - les données sont souvent binaires. Dans cet article, un paramatre de saturation contrdle une non linéarité agissant sur I'erreur qui
§l intervient dans Valgorithme LMS. Cette non linéarité peut ainsi varier de fagon continue de la fonction signe (quantificatear 2 1 bit)

2 Ia fonction linéaire (absence de quantification). Les résultats mesurés par I'écho résiduel montrent que, comparées A des données -
B gaussiennes, des données binaires dégradent d'autant plus les performances que 1a saturation est &levée (proche de la fonction signe).
§ La différence entre les nombres de bits de I'erreur nécessaires pour des données gaussiennes et binaires est évaluée pour un méme
4 écho résidvel en fonction de 1a puissance des données lointaines et du paramtre de saturation.

The effect of a saturation type error non-linearity in the weight update equation in LMS adaptive echo-cancellation is
{ investigated for an independent binary data model. A nonlinear difference equation is derived for the mean norm of the difference
| between the estimate and the unknown filter to be estimated by the algorithm. The difference equation is evaluated numerically. It

is shown that far-end binary data interference is much more deleterious to algorithm transient behavior than far-end gaussian data
! interference. The bit differential, for the same performance in a digital implementation of the algorithm, is studied for binary vs

; Baussian data as a function of the binary data power and the saturation parameter of the non-linearity.

I INTRODUCTION

Quelques articles récents [1-5] ont étudié I'algorithme LMS
modifié par la présence de non linéarités dans 1'incrément.
Dans [2,3] des non linéarités de type saturation sont utilisées
pour modéliser les effets dus A la précision finie dans des im-
plémentations numériques de 'algorithme LMS. L hypothdse
de données gaussiennes faite lors de ces études n'est plus trés
réaliste dans le cas d'annulation d'écho de données.

Le cas de données binaires en annulation d'écho a &€ étudié
dans [4,5] lorsque la f~nction signe apparait dans I'algorithme
LMS. 11 est montré gue par rapport & des données gaussiennes,
des données binaires de m&me puissance dégradent les perfor-
mances de I'annulation d'écho (pour un mé&me pas d'adaptation).
Tel n'est pas le cas pour I'algorithme LMS classique od la
densité de probabilité des données n'intervient pas.

Cet article étend les résultats de [2,4]. 11 analyse les effets
des données binaires, sur la vitesse de convergence de
I'algorithme, lorsque le nombre de bits utilisés pour représenter
I'erreur qui apparait dans I'incrément de l'algorithme varie de 1
(fonction signe) A l'infini (cas linéaire). Les résultats permet-
tent notamment d'évaluer le nombre de bits supplémentaires
nécessaires lorsqu'on passe du cas gaussien au cas binalre pour
une mé&me performance J'annulation d'écho.

11 ANALYSE
1. Algorithme LMS modifié¢

Le probitme de 'annulation d'écho, iltustré par la figure 1,
représente un systtme de transmission bijatérale de données [4).

e,

Le récepteur doit reconstituer les données lointaines do(n) &
partir d'une observation d(n) qui est la somme de do(n), dun
bruit additif ng(n) et d'un signal d'écho des données proches
x(n). Cet écho s'écrit WIX(n) od W, est un filtre inconnu de
longueur N et X(n) le vecteur des données proches
XT(n) = (x(n), x(n - 1), X(0 - 2), ..., x(0 - N+ 1)),

Pour supprimer 'écho on utilise un filtre adaptatif W(n). Ls
signal d'erreur & l'entrée du récepteur peut s'écrire

e(n) = d(n) + n (n) ~ V7(n) X(n) )]
ol
V(n) = W(n) — W, @

On suppose que les termes de l'équation (1) somt
indépendants deux & deux. Les données proches x(n) soot
indépendantes, binaires, de puissance A et la longueur N du
filtre adaptatif est suffisamment grande pour que la sortie
VT(n)X(n) du filtre dilférence V(n) soit considérée comme
gaussienne [4]. .

Le signal d'erreur qui sert & piloter les coefficients do
I'annuleur est aussi le seul signal dont dispose le
Une restitution correcte de ne pourra donc tre oblenuve qu
une bonne réduction de I'écho résiduel VI(n) X(w). Cocl pout
ttre obtenu par l'algorithme LMS de pas d'adaptation ju:

W(n + 1) = W(n) + 1 e(n) X(n). ®



